Author:
Cammas Florence,Herzog Marielle,Lerouge Thierry,Chambon Pierre,Losson Régine
Abstract
The transcriptional intermediary factor 1β (TIF1β) is a corepressor for KRAB-domain-containing zinc finger proteins and is believed to play essential roles in cell physiology by regulating chromatin organization at specific loci through association with chromatin remodeling and histone-modifying activities and recruitment of heterochromatin protein 1 (HP1) proteins. In this study, we have engineered a modified embryonal carcinoma F9 cell line (TIF1βHP1box/-) expressing a mutated TIF1β protein (TIF1βHP1box) unable to interact with HP1 proteins. Phenotypic analysis of TIF1βHP1box/- and TIF1β+/- cells shows that TIF1β–HP1 interaction is not required for differentiation of F9 cells into primitive endoderm-like (PrE) cells on retinoic acid (RA) treatment but is essential for further differentiation into parietal endoderm-like (PE) cells on addition of cAMP and for differentiation into visceral endoderm-like cells on treatment of vesicles with RA. Complementation experiments reveal that TIF1β–HP1 interaction is essential only during a short window of time within early differentiating PrE cells to establish a selective transmittable competence to terminally differentiate on further cAMP inducing signal. Moreover, the expression of three endoderm-specific genes, GATA6, HNF4, and Dab2, is down-regulated in TIF1βHP1box/- cells compared with wild-type cells during PrE differentiation. Collectively, these data demonstrate that the interaction between TIF1β and HP1 proteins is essential for progression through differentiation by regulating the expression of endoderm differentiation master players.
Publisher
Cold Spring Harbor Laboratory
Subject
Developmental Biology,Genetics