Abstract
AbstractWhen at rest, our mind wanders from thought to thought in distinct mental states. Despite the marked importance of ongoing mental processes, it is challenging to capture and relate these states to specific cognitive contents. In this work, we employed ultra-high field functional magnetic resonance imaging (fMRI) and high-density electroencephalography (EEG) to study the ongoing thoughts of participants instructed to retrieve self-relevant past episodes for periods of 20s. These task-initiated, participant-driven activity patterns were compared to a distinct condition where participants performed serial mental arithmetic operations, thereby shifting from self-related to self-unrelated thoughts. BOLD activity mapping revealed selective activity changes in temporal, parietal and occipital areas (“posterior hot zone”), evincing their role in integrating the re-experienced past events into conscious representations during memory retrieval. Functional connectivity analysis showed that these regions were organized in two major subparts of the default mode network, previously associated to “scene-reconstruction” and “self-experience” subsystems. EEG microstate analysis allowed studying these participant-driven thoughts in the millisecond range by determining the temporal dynamics of brief periods of stable scalp potential fields. This analysis revealed selective modulation of occurrence and duration of specific microstates in both conditions. EEG source analysis revealed similar spatial distributions between the sources of these microstates and the regions identified with fMRI. These findings support growing evidence that specific fMRI networks can be captured with EEG as repeatedly occurring, integrated brief periods of synchronized neuronal activity, lasting only fractions of seconds.SignificanceWe investigated the spatiotemporal dynamics of large-scale brain networks related to specific conscious thoughts. We demonstrate here that instructing participants to direct their thoughts to either episodic autobiographic memory or to mental arithmetic modulates distinct networks both in terms of highly spatially-specific BOLD signal oscillations as well as fast sub-second dynamics of EEG microstates. The combined findings from the two modalities evince a clear link between hemodynamic and electrophysiological signatures of spontaneous brain activity by the occurrence of thoughts that last for fractions of seconds, repeatedly appearing over time as integrated coherent activities of specific large-scale networks.
Publisher
Cold Spring Harbor Laboratory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献