Genome-scale metabolic reconstruction of the stress-tolerant hybrid yeast Zygosaccharomyces parabailii

Author:

Filippo Marzia Di,Ortiz-Merino Raúl A.ORCID,Damiani Chiara,Frascotti Gianni,Porro Danilo,Wolfe Kenneth H.,Branduardi Paola,Pescini Dario

Abstract

Genome-scale metabolic models are powerful tools to understand and engineer cellular systems facilitating their use as cell factories. This is especially true for microorganisms with known genome sequences from which nearly complete sets of enzymes and metabolic pathways are determined, or can be inferred. Yeasts are highly diverse eukaryotes whose metabolic traits have long been exploited in industry, and although many of their genome sequences are available, few genome-scale metabolic models have so far been produced. For the first time, we reconstructed the genome-scale metabolic model of the hybrid yeast Zygosaccharomyces parabailii, which is a member of the Z. bailii sensu lato clade notorious for stress-tolerance and therefore relevant to industry. The model comprises 3096 reactions, 2091 metabolites, and 2413 genes. Our own laboratory data were then used to establish a biomass synthesis reaction, and constrain the extracellular environment. Through constraint-based modeling, our model reproduces the co-consumption and catabolism of acetate and glucose posing it as a promising platform for understanding and exploiting the metabolic potential of Z. parabailii.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3