Stochastic model of T Cell repolarization during target elimination (I)

Author:

Hornak I.,Rieger H.

Abstract

AbstractCytotoxic T lymphocytes (T) and natural killer (NK) cells are the main cytotoxic killer cells of the human body to eliminate pathogen-infected or tumorigenic cells (i.e. target cells). Once a NK or T cell has identified a target cell, they form a tight contact zone, the immunological synapse (IS). One then observes a re-polarization of the cell involving the rotation of the microtubule (MT) half-spindle and a movement of the microtubule organizing center (MTOC) to a position that is just underneath the plasma membrane at the center of the IS. Concomitantly a massive relocation of organelles attached to MTs is observed, including the Golgi apparatus, lytic granules and mitochondria. Since the mechanism of this relocation is still elusive we devise a theoretical model for the molecular motor driven motion of the MT half-spindle confined between plasma membrane and nucleus during T cell polarization. We analyze different scenarios currently discussed in the literature, the cortical sliding and the capture-shrinkage mechanisms, and compare quantitative predictions about the spatio-temporal evolution of MTOC position and spindle morphology with experimental observations. The model predicts the experimentally observed biphasic nature of the repositioning process due to an interplay between spindle geometry and motor forces and confirms the dominance of the capture-shrinkage over the cortical sliding mechanism when MTOC and IS are initially diametrically opposed. We also find that the two mechanisms act synergetically, thereby reducing the resources necessary for repositioning. Moreover, it turns out that the localization of dyneins in the pSMAC facilitates their interaction with the MTs. Our model also opens a way to infer details of the dynein distribution from the experimentally observed features of the MT half-spindle dynamics. In a subsequent publication we will address the issue of general initial configurations and situations in which the T cell established two immunological synapses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3