Author:
Blanco-Pastor J.L.,Manel S.,Barre P.,Roschanski A.M.,Willner E.,Dehmer K.J.,Hegarty M.,Muylle H.,Ruttink T.,Roldán-Ruiz I.,Ledauphin T.,Escobar-Gutierrez A.,Sampoux J.P.
Abstract
AbstractAimGrasslands have been pivotal in the development of herbivore breeding since the Neolithic and are still nowadays the most widespread agricultural land-use across Europe. However, it remains unclear whether the current large-scale genetic variation of plant species found in natural grasslands of Europe is the result of human activities or natural processes.LocationEurope.TaxonLolium perenne L (perennial ryegrass).MethodsWe reconstructed the phylogeographic history of L. perenne, a dominant grassland species, using 481 natural populations including 11 populations from closely related taxa. We combined the Genotyping-by-Sequencing (GBS) and Pool-sequencing (Pool-seq) methods to obtain high-quality allele frequency calls of ~ 500 k SNP loci. We performed genetic structure analyses and demographic reconstructions based on the site frequency spectrum (SFS). We additionally used the same genotyping protocol to assess the genomic diversity of a set of 32 cultivars representative of the L. perenne cultivars widely used for forage purposes.ResultsExpansion across Europe took place during the Würm glaciation (12-110 kya), a cooling period that decreased the dominance of trees in favour of grasses. Splits and admixtures in L. perenne fit historical sea level changes in the Mediterranean basin. The development of agriculture in Europe (7-3.5 kya), that caused an increase in the abundance of grasslands, did not have an effect on the demographic patterns of L. perenne. We found little differentiation between modern cultivars and certain natural variants. However, modern cultivars do not represent the wide genetic variation found in natural populations.Main conclusionsDemographic events in L. perenne can be explained by the changing climatic conditions during the Pleistocene. Natural populations maintain a wide genomic variability at continental scale that has been underused by recent breeding activities. This variability constitutes valuable standing genetic variation for future adaptation of grasslands to climate change, safeguarding the agricultural services they provide.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献