Stepwise C-Terminal Truncation of Cardiac Troponin T Alters Function at Low and Saturating Ca2+

Author:

Johnson D.,Angus W.,Chalovich J.M.ORCID

Abstract

AbstractActivation of striated muscle contraction occurs in response to Ca2+ binding to troponin C (TnC). The resulting reorganization of troponin repositions tropomyosin on actin and permits activation of myosin catalyzed ATP hydrolysis. It now appears that the levels of activity at both low and saturating Ca2+ are modulated by the C-terminal 14 amino acids of cardiac troponin T (TnT). We made a series of mutants of human cardiac troponin T, isoform 2, with deletions from the C-terminal end: Δ4, Δ6, Δ8, Δ10 and Δ14. We measured the effect of these mutations on the normalized ATPase activity at saturating Ca2+, the change in acrylodan tropomyosin fluorescence at low Ca2+, and the degree of Ca2+ stimulation of the rate of binding of rigor myosin S1 to pyrene-labeled actin-tropomyosin-troponin. Together, these measurements define the distribution of actin-tropomyosin-troponin among the 3 regulatory states. Results from rates of rigor S1 binding deviated from other measurements when > 8 residues of TnT were deleted. That deviation was due to increased rates of binding of rigor S1 to pyrene-labeled actin with truncated TnT at saturating Ca2+. Such behavior violated a key assumption in the determination of the B state by this method. Nevertheless, all methods show that as residues were removed from the C-terminus of TnT there was approximately a proportional loss of the inactive B state at low Ca2+ and an increase in the active M state at saturating Ca2+. Most of the C-terminal 14 residues of human cardiac troponin T are essential for forming the inactive B state at low Ca2+ and for limiting the formation of the active M state at saturating Ca2+.

Publisher

Cold Spring Harbor Laboratory

Reference74 articles.

1. Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin;The Journal of biological chemistry,1982

2. Mechanism of action of troponin-tropomyosin:inhibition of actomyosin ATPase activity without inhibition of myosin binding to actin;The Journal of biological chemistry,1981

3. Calcium-insensitive binding of heavy meromyosin to regulated actin at physiological ionic strength;Journal of Biological Chemistry,1985

4. Parallel inhibition of active force and relaxed fiber stiffness by caldesmon fragments at physiological ionic strength and temperature conditions: additional evidence that weak cross-bridge binding to actin is an essential intermediate for force generation

5. Evidence for cross-bridge attachment in relaxed muscle at low ionic strength.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3