Transcriptome Landscape Reveals Underlying Mechanisms of Ovarian Cell Fate Differentiation and Primordial Follicle Assembly

Author:

Wang Jun-Jie,Ge Wei,Zhai Qiu-Yue,Liu Jing-Cai,Sun Xiao-Wen,Liu Wen-Xiang,Li Lan,Lei Chu-Zhao,Dyce Paul W.,De Felici Massimo,Shen Wei

Abstract

AbstractPrimordial follicle assembly in mammals occurs at perinatal ages and largely determines the ovarian reserve available to support the reproductive lifespan. The primordial follicle structure is generated by a complex network of interactions between oocytes and ovarian somatic cells that remain poorly understood. In the present research, using single-cell RNA sequencing performed over a time-series on mouse ovaries coupled with several bioinformatics analyses, the complete dynamic genetic programs of germ and granulosa cells from E16.5 to PD3 are reported for the first time. The time frame of analysis comprises the breakdown of germ cell cysts and the assembly of primordial follicles. Confirming the previously reported expression of genes by germ cells and granulosa cells, our analyses identified ten distinct gene clusters associated to germ cells and eight to granulosa cells. Consequently, several new genes expressed at significant levels at each investigated stage were assigned. Building single-cell pseudo temporal trajectories five states and two branch points of fate transition for the germ cells, and three states and one branch point for the granulosa cells were revealed. Moreover, GO and ClueGO term enrichment enabled identifying biological processes, molecular functions and cellular components more represented in germ cells and granulosa cells or common to both cell types at each specific stage. Finally, by SCENIC algorithm, we were able to establish a network of regulons that can be postulated as likely candidates for sustaining germ cell specific transcription programs throughout the investigated period.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3