Statistically consistent divide-and-conquer pipelines for phylogeny estimation using NJMerge

Author:

Molloy Erin K.ORCID,Warnow TandyORCID

Abstract

AbstractBackgroundDivide-and-conquer methods, which divide the species set into overlapping subsets, construct a tree on each subset, and then combine the subset trees using a supertree method, provide a key algorithmic framework for boosting the scalability of phylogeny estimation methods to large datasets. Yet the use of supertree methods, which typically attempt to solve NP-hard optimization problems, limits the scalability of such approaches.ResultsIn this paper, we introduce a divide-and-conquer approach that does not require supertree estimation: we divide the species set into pairwise disjoint subsets, construct a tree on each subset using a base method, and then combine the subset trees using a distance matrix. For this merger step, we present a new method, called NJMerge, which is a polynomial-time extension of Neighbor Joining (NJ); thus, NJMerge can be viewed either as a method for improving traditional NJ or as a method for scaling the base method to larger datasets. We prove that NJMerge can be used to create divide-and-conquer pipelines that are statistically consistent under some models of evolution. We also report the results of an extensive simulation study evaluating NJMerge on multi-locus datasets with up to 1000 species. We found that NJMerge sometimes improved the accuracy of traditional NJ and substantially reduced the running time of three popular species tree methods (ASTRAL-III, SVDquartets, and “concatenation” using RAxML) without sacrificing accuracy. Finally, although NJMerge can fail to return a tree, in our experiments, NJMerge failed on only 11 out of 2560 test cases.ConclusionsTheoretical and empirical results suggest that NJMerge is a valuable technique for large-scale phylogeny estimation, especially when computational resources are limited. NJMerge is freely available on Github (http://github.com/ekmolloy/njmerge).

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3