Mammalian Amoeboid Swimming is propelled by molecular and not protrusion-based paddling in Lymphocytes

Author:

Aoun Laurene,Nègre Paulin,Farutin Alexander,Garcia-Seyda Nicolas,Rizvi Mohd Suhail,Galland Rémi,Michelot Alphée,Luo Xuan,Biarnes-Pelicot Martine,Hivroz C.,Rafai Salima,Sibarita Jean-Baptiste,Valignat Marie-Pierre,Misbah Chaouqi,Theodoly Olivier

Abstract

ABSTRACTMammalian cells developed two main migration modes. The slow mesenchymatous mode, like fibroblasts crawling, relies on maturation of adhesion complexes and actin fiber traction, while the fast amoeboid mode, observed exclusively for leukocytes and cancer cells, is characterized by weak adhesion, highly dynamic cell shapes, and ubiquitous motility on 2D and in 3D solid matrix. In both cases, interactions with the substrate by adhesion or friction are widely accepted as a prerequisite for mammalian cell motility, which precludes swimming. We show here experimentally and computationally that leukocytes do swim, and that propulsion is not fueled by waves of cell deformation but by a rearward and inhomogeneous treadmilling of the cell envelope. We model the propulsion as a molecular paddling by transmembrane proteins linked to and advected by the actin cortex, whereas freely diffusing transmembrane proteins hinder swimming. This mechanism explains that swimming is five times slower than the cortex retrograde flow. Resultantly the ubiquitous ability of mammalian amoeboid cells to migrate in various environments can be explained for lymphocytes by a single machinery of envelope treadmilling.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3