Homeostatic versus pathological functions of Dual Leucine Zipper Kinase in the adult mouse brain

Author:

Goodwani Sunil,Hamby Mary EORCID,Buggia-Prevot Virginie,Acton Paul,Fernandez Celia,Al-Ouran Rami,Jiang Yongying,Soth Michael,Jones Philip,Ray William J.ORCID

Abstract

AbstractDual Leucine Zipper Kinase (DLK, Map3k12), is an injury-induced axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). DLK is generally considered to be inactive in healthy neurons until induced by injury. However we report that DLK in the cerebellum appears constitutively active and drives nuclear p-c-Jun in cerebellar granule neurons in the absence of injury. In contrast the adult hippocampus expresses similar levels of apparently constitutively active DLK, but p-c-Jun is lower and does not accumulate in the nucleus. Injury is required there for p-c-jun nuclear expression, because in the rTg4510 model of tauopathy, where there is extensive hippocampal pathology, nuclear p-c-Jun is induced in a DLK-dependent manner. This context-specific regulation of DLK signaling could relate to availability of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1) whereas the hippocampus contains more JIP-3 and Plenty of SH3 (POSH). To understand how DLK signaling differs between the hippocampus and cerebellum, we selectively blocked DLK and measured changes in protein and mRNA expression. In the cerebellum, p-c-Jun levels correlated with synaptophysin, suggesting a link between DLK activity and synaptic maintenance. In rTg4510 mice, hippocampal p-c-Jun instead correlated with markers of neuronal injury and gliosis (Iba1 and GFAP). RNA sequencing revealed that in both brain regions DLK inhibition reduced expression of JNK/c-Jun pathway components and a novel set of co-regulated genes. In the cerebellum, Jun mRNA levels were co-regulated with genes mapping to metabolic pathways, while in the rTg4510 hippocampus, Jun-correlated mRNAs correspond primarily to neuroinflammation. These data suggest that in the uninjured cerebellum, DLK/p-c-Jun signaling is linked to synaptic regulation, but in the hippocampus, pathologically activated DLK/p-c-Jun signaling regulates genes associated with the injury response.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3