Gene-methylation interactions: Discovering region-wise DNA methylation levels that modify SNP-associated disease risk

Author:

Romanowska JuliaORCID,Haaland Øystein A.ORCID,Jugessur Astanand,Gjerdevik Miriam,Xu ZongliORCID,Taylor Jack,Wilcox Allen J.,Jonassen Inge,Lie Rolv Terje,Gjessing Håkon K.

Abstract

AbstractThe genetic code is tightly linked to epigenetic instructions as to what genes to express, and when and where to express them. The most studied epigenetic mark is DNA methylation at CpG dinucleotides. Today’s technology enables a rapid assessment of DNA sequence and methylation levels at a single-site resolution for hundreds of thousands of sites in the human genome, in thousands of individuals at a time. Recent years have seen a rapid increase in epigenome-wide association studies (EWAS) searching for the causes of risk for genetic diseases that previous genome-wide association studies (GWAS) could not pinpoint. However, those single-omics data analyses led to even more questions and it has become clear that only by integrating data one can get closer to answers. Here, we propose two new methods within genetic association analyses that treat the level of DNA methylation at a given CpG site as environmental exposure. Our analyses search for statistical interactions between a given allele and DNA methylation (G×Me), and between a parent-of-origin effect and DNA methylation (PoO× Me). The new methods were implemented in the R package Haplin and were tested on a dataset comprising genotype data from mother-father-child triadsm with DNA methylation data from the children only. The phenotype here was orofacial clefts (OFC), a relatively common birth defect in humans, which is known to have a genetic origin and an environmental component possibly mediated by DNA methylation. We found no significant PoO×Me interactions and a few significant G×Me interactions. Our results show that the significance of these interaction effects depends on the genomic region in which the CpGs reside and on the number of strata of methylation level. We demonstrate that, by including the methylation level around the SNP in the analyses, the estimated relative risk of OFC can change significantly. We also discuss the importance of including control data in such analyses. The new methods will be of value for all the researchers who want to explore genome- and epigenome-wide datasets in an integrative manner. Moreover, thanks to the implementation in a popular R package, the methods are easily accessible and enable fast scans of the genome- and epigenome-wide datasets.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3