Porous yet Dense matrices: using ice to shape collagen 3D cell culture systems with increased physiological relevance

Author:

Parisi CleoORCID,Thiébot BénédicteORCID,Mosser GervaiseORCID,Trichet LéaORCID,Manivet PhilippeORCID,Fernandes Francisco M.ORCID

Abstract

ABSTRACTStandardin vitrocell culture is one of the pillars of biomedical science. However, there is increasing evidence that 2D systems provide biological responses that are often in disagreement within vivoobservations, partially due to limitations in reproducing the native cellular microenvironment. 3D materials that are able to mimic the native cellular microenvironment to a greater extent tackle these limitations. Here, we report Porous yet Dense (PyD) type I collagen materials obtained by ice-templating followed by topotactic fibrillogenesis. These materials combine extensive macroporosity, favouring the cell migration and nutrients exchange, as well as dense collagen walls, which mimic locally the Extracellular Matrix. When seeded with Normal Human Dermal Fibroblasts (NHDFs), PyD matrices allow for a faster and more extensive colonisation when compared with equivalent Non-Porous matrices. The textural properties of the PyD materials also impact cytoskeletal and nuclear 3D morphometric parameters. Due to the effectiveness in creating a biomimetic 3D environment for NHDFs and the ability to promote cell culture for more than 28 days without subculture, we anticipate that PyD materials could configure an important step towardsin vitrosystems applicable to other cell types and with higher physiological relevance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3