STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale

Author:

Chen WeiliangORCID,Carel Tristan,Awile Omar,Cantarutti Nicola,Castiglioni Giacomo,Cattabiani Alessandro,Marmol Baudouin Del,Hepburn Iain,King James G,Kotsalos Christos,Kumbhar Pramod,Lallouette Jules,Melchior Samuel,Schürmann Felix,De Schutter ErikORCID

Abstract

AbstractRecent advances in computational neuroscience have demonstrated the usefulness and importance of stochastic, spatial reaction-diffusion simulations. However, ever increasing model complexity renders traditional serial solvers, as well as naive parallel implementations, inadequate. This paper introduces a new generation of the STochastic Engine for Pathway Simulation (STEPS) project, denominated STEPS 4.0, and its core components which have been designed for improved scalability, performance, and memory efficiency. STEPS 4.0 aims to enable novel scientific studies of macroscopic systems such as whole cells while capturing their nanoscale details. This class of models is out of reach for serial solvers due to the vast quantity of computation in such detailed models, and also out of reach for naive parallel solvers due to the large memory footprint. Based on a distributed mesh solution, we introduce a new parallel stochastic reaction-diffusion solver and a deterministic membrane potential solver in STEPS 4.0. The distributed mesh, together with improved data layout and algorithm designs, significantly reduces the memory footprint of parallel simulations in STEPS 4.0. This enables massively parallel simulations on modern HPC clusters and overcomes the limitations of the previous parallel STEPS implementation. Current and future improvements to the solver are not sustainable without proper software engineering practices. For this reason, we also give an overview of how the STEPS codebase and the development environment have been updated to follow modern software development practices. We benchmark performance improvement and memory footprint on three published models with different complexities, from a simple spatial stochastic reaction-diffusion model, to a more complex one that is coupled to a deterministic membrane potential solver to simulate the calcium burst activity of a Purkinje neuron. Simulation results of these models suggest that the new solution dramatically reduces the per-core memory consumption by more than a factor of 30, while maintaining similar or better performance and scalability.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Petsc/ts: A modern scalable ode/dae solver library;arXiv preprint,2018

2. Stochastic Calcium Mechanisms Cause Dendritic Calcium Spike Variability

3. Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models;Frontiers in Cellular Neuroscience,2014

4. NeuroMorpho.Org: A Central Resource for Neuronal Morphologies

5. Rallpacks: a set of benchmarks for neuronal simulators

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MOD2IR: High-Performance Code Generation for a Biophysically Detailed Neuronal Simulation DSL;Proceedings of the 32nd ACM SIGPLAN International Conference on Compiler Construction;2023-02-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3