Not digested: algal glycans move carbon dioxide into the deep-sea

Author:

Vidal-Melgosa SilviaORCID,Lagator MatijaORCID,Sichert AndreasORCID,Priest TaylorORCID,Pätzold Jürgen,Hehemann Jan-HendrikORCID

Abstract

AbstractMarine algae annually synthesize gigatons of glycans from carbon dioxide, exporting it within sinking particles into the deep-sea and underlying sea floor, unless those glycans are digested before by bacteria. Identifying algal glycans in the ocean remains challenging with the molecular resolution of conventional analytic techniques. Whether algal glycans are digested by heterotrophic bacteria during downward transport, before they can transfer carbon dioxide from the ocean surface into the deep-sea or the sea floor, remains unknown. In the Red Sea Shaban Deep, where at 1500 m water depth a brine basin acts as a natural sediment trap, we found its high salt and low oxygen concentration accumulated and preserved exported algal glycans for the past 2500 years. By using monoclonal antibodies specific for glycan structures, we detected fucose-containing sulfated polysaccharide, β-glucan, β-mannan and arabinogalactan glycans, synthesized by diatoms, coccolithophores, dinoflagellates and other algae living in the sunlit ocean. Their presence in deep-sea sediment demonstrates these algal glycans were not digested by bacteria. Instead they moved carbon dioxide from the surface ocean into the deep-sea, where it will be locked away from the atmosphere at least for the next 1000 years. Considering their global synthesis, quantity and stability against degradation during transport through the water column, algal glycans are agents for carbon sequestration.Significance statementAlgae and plants use the greenhouse gas carbon dioxide to synthesize polymeric carbohydrates, or glycans, for energy storage, structural support and as protection against invasion by microbes. Glycans provide protection, are carbon sinks and enable carbon sequestration for as long as they are not digested by bacteria or other organisms, which releases the carbon dioxide back in to the atmosphere. In this study, we show that non-digested algal glycans sink into the deep ocean and into marine sediment. Thus, glycans are more than food for animals and prebiotics for bacteria, they are also molecules that remove carbon dioxide from the atmosphere and transfer it to the deep-sea, where it can be stored for 1000 years and longer.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3