Abstract
AbstractDuplication of genes and their associated cis-regulatory elements, or enhancers, is a key contributor to genome evolution and biological complexity. Moreover, many paralogs, particularly tandem duplicates, are fixed for long periods of time under the control of shared enhancers. However, in most cases the mechanism by which gene expression and function diverge following duplication is not known. Here we dissect the regulation and function of the paralogous nubbin/pdm2 genes during wing development in Drosophila melanogaster. We show that these paralogs play a redundant role in the wing and that their expression relies on a single shared wing enhancer. However, the two genes differ in their ability to respond to this enhancer, with nub responding in all wing progenitor cells and pdm2 only in a small subset. This divergence is a result of a pdm2-specific silencer element at the pdm2 promoter that receives repressive input from the transcription factor Rotund. Repression through this silencer also depends on nub, allowing pdm2 to fully respond to the wing enhancer when nub expression is perturbed and functional compensation to occur. Thus, expression divergence downstream of a shared enhancer arises as a consequence of silencing the promoter of one paralog.
Publisher
Cold Spring Harbor Laboratory