Author:
Chen Dongning,Du Yu,Llewellyn Jessica,Bonna Arkadiusz,Zuo Biao,Janmey Paul A.,Farndale Richard W.,Wells Rebecca G.
Abstract
AbstractType I collagen is the most abundant structural protein in the body and, with other fibrillar collagens, forms the fibrous network of the extracellular matrix (ECM). Another group of ECM polymers, the glycosaminoglycans (GAGs) and GAG-modified proteoglycans, play important roles in regulating collagen behaviors and contribute to the compositional, structural and mechanical complexity of the ECM. While the binding between collagen and small leucine-rich proteoglycans (SLRPs) has been studied in detail, the interactions between collagen and the large bottlebrush proteoglycan versican are not well understood. Here, we report that versican binds collagen directly and regulates collagen structure and mechanics. Versican colocalizes with collagen fibers in vivo and binds to collagen via its C-terminal G3 domain (a non-GAG-modified domain present in all known versican isoforms) in vitro; it promotes the deposition of a highly-aligned collagen-rich matrix by fibroblasts. Versican also shows an unexpected effect on the rheology of collagen gels in vitro, causing decreased stiffness and attenuated shear strain stiffening, and the cleavage of versican in liver results in reduced tissue compression stiffening. Thus, versican is an important collagen binding partner, playing a role in modulating collagen organization and mechanics.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献