Hepatocyte-specific loss of LAP2α protects against diet-induced hepatic steatosis and steatohepatitis in male mice

Author:

Upadhyay Kapil K.ORCID,Choi Eun-Young K.ORCID,Foisner RolandORCID,Omary M. BishrORCID,Brady Graham F.ORCID

Abstract

AbstractThere is increasing evidence for the importance of the nuclear envelope in lipid metabolism, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH). Human mutations in LMNA, encoding A-type nuclear lamins, cause early-onset insulin resistance and NASH, while hepatocyte-specific deletion of Lmna predisposes to NASH with fibrosis in male mice. Given that variants in the gene encoding LAP2α, a nuclear protein that regulates lamin A/C, were previously identified in patients with NAFLD, we sought to determine the role of LAP2α in NAFLD using a mouse genetic model. Hepatocyte-specific Lap2a-knockout (Lap2α(ΔHep)) mice and littermate controls were fed normal chow or high-fat diet (HFD) for 8 weeks or 6 months. In contrast to what was observed with hepatocyte-specific Lmna deletion, male Lap2a(ΔHep) mice showed no increase in hepatic steatosis or NASH compared to controls. Rather, Lap2a(ΔHep) mice demonstrated reduced hepatic steatosis, particularly after long-term HFD, with decreased susceptibility to diet-induced NASH. Accordingly, whereas pro-steatotic genes Cidea, Mogat1, and Cd36 were upregulated in Lmnα-KO mice, they were downregulated in Lap2α(ΔHep) mice, and there was a trend toward decreases in pro-inflammatory and pro-fibrotic genes. These data indicate that hepatocyte-specific Lap2a deletion protects against hepatic steatosis and NASH in mice; therefore, LAP2α might represent a potential therapeutic target in human NASH.Brief SummaryLoss of LAP2α in mouse hepatocytes protected against diet-induced hepatic steatosis and NASH.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3