No evidence for asymmetric sperm deposition in a species with asymmetric male genitalia

Author:

van Gammeren Sanne,Lang Michael,Rücklin Martin,Schilthuizen Menno

Abstract

AbstractBackgroundAsymmetric genitalia have repeatedly evolved in animals, yet the underlying causes for their evolution are mostly unknown. The fruitfly Drosophila pachea has asymmetric external genitalia and an asymmetric phallus with a right-sided gonopore. The complex of female and male genitalia is asymmetrically twisted during copulation and males adopt a right-sided copulation posture on top of the female. We wished to investigate if asymmetric male genital morphology and a twisted gentitalia complex may be associated with differential allocation of sperm into female sperm storage organs.MethodsWe examined the internal complex of female and male reproductive organs by micro-computed tomography using Synchrotron X-rays before, during and after copulation. In additon, we monitored sperm aggregation states and timing of sperm transfer during copulation by premature interruption of copulation at different time-points.ResultsThe asymmetric phallus is located at the most caudal end of the female abdomen during copulation. The female reproductive tract, in particular the oviduct, re-arranges during copulation. It is narrow in virgin females and forms a broad vesicle at 20 min after the start of copulation. Sperm transfer into female sperm storage organs (spermathecae) was only in a minority of examined copulation trials (13 / 64). Also, we found that sperm was mainly transferred early, at 2 - 4 min after the start of copulation. We did not detect a particular pattern of sperm allocation in the left or right spermathecae. Sperm adopted a granular or filamentous aggregation state in the female uterus and spermathecae, respectively.DiscussionNo evidence for asymmetric sperm deposition was identified that could be associated with asymmetric genital morphology or twisted complexing of genitalia. Male genital asymmetry may potentially have evolved as a consequence of a complex internal alignment of reproductive organs during copulation in order to optimize low sperm transfer rates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3