Π-Π Interactions Stabilize PeptoMicelle-Based Formulations of Pretomanid Derivatives Leading to Promising Therapy Against Tuberculosis in Zebrafish and Mouse Models

Author:

Dal Nils-Jørgen K.,Schäfer Gabriela,Thompson Andrew M.,Schmitt Sascha,Redinger Natalja,Alonso-Rodriguez Noelia,Johann Kerstin,Ojong Jessica,Wohlmann Jens,Best Andreas,Koynov Kaloian,Zentel Rudolf,Schaible Ulrich E.,Griffiths Gareth,Barz Matthias,Fenaroli FedericoORCID

Abstract

ABSTRACTTuberculosis is the deadliest bacterial disease globally, threatening the lives of millions every year. New antibiotic therapies that can shorten the duration of treatment, improve cure rates, and impede the development of drug resistance are desperately needed. Here, we used polymeric micelles to encapsulate four second-generation derivatives of the antitubercular drug pretomanid that had previously displayed much better in vivo activity against Mycobacterium tuberculosis than pretomanid itself. Because these compounds were relatively hydrophobic, we expected that such micellar formulations would increase drug bioavailability, reduce toxicities, and improve therapeutic outcomes. The polymeric micelles were based on polypept(o)ides (PeptoMicelles) and were stabilized in their hydrophobic core by π-π interactions, allowing the efficient encapsulation of aromatic pretomanid derivatives. The stability of these π-π-stabilized PeptoMicelles was demonstrated in water, blood plasma, and lung surfactant by fluorescence cross-correlation spectroscopy and was further supported by prolonged circulation times of several days in the vasculature of zebrafish larvae. The pretomanid derivative with the best in vitro potency against Mycobacterium marinum (“drug D”) was also the most efficacious PeptoMicelle formulation tested in the zebrafish larvae infection model, almost completely eradicating the bacteria at non-toxic doses. This lead formulation was further assessed against Mycobacterium tuberculosis in the susceptible C3HeB/FeJ mouse model, which develops human-like necrotic granulomas. Following intravenous administration, the drug D micellar formulation significantly reduced bacterial burden and inflammatory responses in the lungs and spleens of infected mice.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3