Tween-20 induces the structural remodelling of single lipid vesicles

Author:

Dresser Lara,Graham Sarah P.,Miller Lisa M.ORCID,Schaefer Charley,Conteduca DonatoORCID,Johnson StevenORCID,Leake Mark C.ORCID,Quinn Steven D.ORCID

Abstract

AbstractThe interaction of Tween-20 with lipid membranes is crucial for a number of biotechnological applications including viral inactivation and membrane protein extraction, but the underlying mechanistic details have remained elusive. Evidence from ensemble assays supports a global model of Tween-20 induced membrane disruption that broadly encompasses association of the surfactant with the membrane surface, membrane fragmentation and the release of mixed micelles to solution, but whether this process involves intermediate and dynamic transitions between regimes is an open question. In search of the mechanistic origins of membrane disruption, increasing focus is put on identifying Tween-20 interactions with highly controllable model membranes. In light of this, and to unveil quantitative mechanistic details, we employed highly interdisciplinary biophysical approaches, including quartz-crystal microbalance with dissipation monitoring, steady-state and time-resolved fluorescence and FRET spectroscopy, dynamic light scattering, fluorescence correlation spectroscopy, wide-field single-vesicle imaging and scanning electron microscopy, to interrogate the interactions between Tween-20 and both freely-diffusing and surface-immobilized model-membrane vesicles. Using ultrasensitive sensing approaches, we discovered that Tween-20 leads to a stepwise and phase-dependent structural remodelling of sub-micron sized vesicles that includes permeabilization and swelling, even at detergent concentrations below the critical micellar concentration. These insights into the structural perturbation of lipid vesicles upon Tween-20 interaction highlight the impact on vesicle conformation prior to complete solubilization, and the tools presented may have general relevance for probing the interaction between lipid vesicles and a wide variety of disruptive agents.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3