SARS-CoV-2 spike proteins uptake mediated by lipid raft ganglioside GM1 in human cerebrovascular cells

Author:

McQuaid Conor,Solorzano Alexander,Dickerson Ian,Deane RashidORCID

Abstract

AbstractWhile there is clinical evidence of neurological manifestation in coronavirus disease-19, it’s unclear whether this is due to differential severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake from blood by cells of the cerebrovasculature. SARS-CoV-2 and its spike protein (SP) interact with the endothelium but the roles of extracellular peptidase domain on angiotensin converting enzyme 2 receptors (ACE2) and ACE2 independent pathways (such as glycans) are not fully elucidated. In addition, for SARS-CoV-2 to enter the brain parenchyma from blood it has to cross several cell types, including the endothelium, pericytes and vascular smooth muscle. Since SARS-CoV-2 interacts with host cells via it SP at the entry point of it life cycle, we used fluorescently labelled SP (SP-555) (wild type and mutants) to model viral behaviour, in vitro, for these cell types (endothelial, pericytes and vascular smooth muscle) to explore pathways of viral entry into brain from blood. There was differential SP uptake by these cell types. The endothelial cells had the least uptake, which may limit SP uptake into brain from blood. Uptake was mediated by ACE2, but it was dependent on SP interaction with ganglioside GM1 in the lipid raft. Mutation sites, N501Yand E484K and D614G, as seen in variants of interest, were differentially taken up by these cell types. There was greater uptake but neutralization with anti-ACE2 and anti-GM1antibodies was less effective. Our data suggested that GM1/lipid raft is an important entry point of SARS-CoV-2 into these cells since inhibition of SP uptake with both anti-ACE2 and anti-GM1 together was similar to that with only anti-GM1, and both ACE2 and GM1 are within the lipid raft region of plasma membrane. Thus, GM1 is a potential SARS-CoV-2 and therapeutic target at the cerebrovasculature.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3