Author:
Halali Sridhar,Saastamoinen Marjo
Abstract
ABSTRACTIn variable environments, phenotypic plasticity can increase fitness by providing tight environment-phenotype matching. However, adaptive plasticity is expected to evolve only when the future selective environment can be predicted based on the prevailing conditions. That is, the juvenile environment should be predictive of the adult environment (within-generation plasticity) or the parental environment should be predictive of the offspring environment (transgenerational plasticity). Here, we test links between environmental predictability and evolution of adaptive plasticity by combining time series analyses and a common garden experiment using temperature as a stressor in a temperate butterfly (Melitaea cinxia). Time series analyses revealed that across season fluctuations in temperature over 48 years is overall predictable. However, within the growing season, temperature fluctuations showed high heterogeneity across years with low autocorrelations and timing of temperature peaks were asynchronous. Most life-history traits showed strong within-generation plasticity for temperature and traits such as body size and growth rate broke the temperature-size rule. Evidence for transgenerational plasticity, however, was weak and detected for only two traits each in an adaptive and non-adaptive direction. We suggest that low predictability of temperature fluctuations within the growing season likely disfavours the evolution of adaptive transgenerational plasticity but instead favours strong within-generation plasticity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献