Discovering dynamical models of human behavior

Author:

Jaffe Paul I.ORCID,Poldrack Russell A.ORCID,Schafer Robert J.ORCID,Bissett Patrick G.ORCID

Abstract

AbstractResponse time (RT) data collected from cognitive tasks are a cornerstone of psychology and neuroscience research, yet existing models of these data either make strong assumptions about the data generating process or are limited to modeling single trials. We introduce task-DyVA, a deep learning framework in which expressive dynamical systems are trained to reproduce sequences of RTs observed in data from individual human subjects. Models fitted to a large task-switching dataset captured subject-specific behavioral differences with high temporal precision, including task-switching costs. Through perturbation experiments and analyses of the models’ latent dynamics, we find support for a rational account of switch costs in terms of a stability-flexibility tradeoff. Thus, our framework can be used to discover interpretable cognitive theories that explain how the brain dynamically gives rise to behavior.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3