Characterization of Hydrophobic Interactions of SARS-CoV-2 and MERS-CoV Spike Protein Fusion Peptides Using Single Molecule Force Measurements

Author:

Qiu Cindy,Whittaker Gary R.,Gellman Samuel H.,Daniel Susan,Abbott Nicholas L.

Abstract

ABSTRACTWe address the challenge of understanding how hydrophobic interactions are encoded by fusion peptide sequences within coronavirus (CoV) spike proteins. Within the fusion peptides of SARS-CoV-2 and MERS-CoV, a largely conserved peptide sequence called FP1 (SFIEDLLFNK and SAIEDLLFDK in SARS-2 and MERS, respectively) has been proposed to play a key role in encoding hydrophobic interactions that drive viral-host cell membrane fusion. While a non-polar triad (LLF) is common to both FP1 sequences, and thought to dominate the encoding of hydrophobic interactions, FP1 from SARS and MERS differ in two residues (Phe 2 versus Ala 2 and Asn 9 versus Asp 9, respectively). Here we explore if single molecule force measurements can quantify hydrophobic interactions encoded by FP1 sequences, and then ask if sequence variations between FP1 from SARS and MERS lead to significant differences in hydrophobic interactions. We find that both SARS-2 and MERS wild-type FP1 generate measurable hydrophobic interactions at the single molecule level, but that SARS-2 FP1 encodes a substantially stronger hydrophobic interaction than its MERS counterpart (1.91 ± 0.03 nN versus 0.68 ± 0.03 nN, respectively). By performing force measurements with FP1 sequences with single amino acid substitutions, we determine that a single residue mutation (Phe 2 versus Ala 2) causes the almost threefold difference in the hydrophobic interaction strength generated by the FP1 of SARS-2 versus MERS, despite the presence of LLF in both sequences. Infrared spectroscopy and circular dichroism measurements support the proposal that the outsized influence of Phe 2 versus Ala 2 on the hydrophobic interaction arises from variation in the secondary structure adopted by FP1. Overall, these insights reveal how single residue diversity in viral fusion peptides, including FP1 of SARS-CoV-2 and MERS-CoV, can lead to substantial changes in intermolecular interactions proposed to play a key role in viral fusion, and hint at strategies for regulating hydrophobic interactions of peptides in a range of contexts.SIGNIFICANCEFusion of coronaviruses (CoVs) and host cells is mediated by the insertion of the fusion peptide (FP) of the viral spike protein into the host cell membrane. Hydrophobic interactions between FPs with their host cell membranes regulate the viral membrane fusion process and are key to determining infection ability. However, it is not fully understood how the amino acid sequences in FPs mediate hydrophobic interactions. We use single-molecule force measurements to characterize hydrophobic interactions of FPs from SARS-CoV-2 and MERS-CoV. Our findings provide insight into the mechanisms by which the amino acid composition of FPs encodes hydrophobic interactions and their implications for fusion activity critical to the spread of infection.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3