A tissue boundary orchestrates the segregation of inner ear sensory organs

Author:

Chen Ziqi,Xu Shuting,Żak Magdalena,Daudet NicolasORCID

Abstract

AbstractThe inner ear contains distinct sensory organs, produced sequentially by segregation from a large sensory-competent domain in the developing otic vesicle. To understand the mechanistic basis of this process, we investigated the changes in prosensory cell patterning, proliferation and character during the segregation of some of the vestibular organs in the mouse and chicken otic vesicle. We discovered a specialized boundary domain, located at the interface of segregating organs. It is composed of prosensory cells that gradually enlarge, elongate and are ultimately diverted from a prosensory fate. Strikingly, the boundary cells align their apical borders and constrict basally at the interface of cells expressing or not the Lmx1a transcription factor, an orthologue of drosophila Apterous. The boundary domain is absent in Lmx1a-deficient mice, which exhibit defects in sensory organ segregation, and is disrupted by the inhibition of ROCK-dependent actomyosin contractility. Altogether, our results suggest that actomyosin-dependent tissue boundaries ensure the proper separation of inner ear sensory organs and uncover striking homologies between this process and the compartmentalization of the drosophila wing disc by lineage-restricted boundaries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3