Microtubules control Buc Phase separation and Balbiani body condensation in zebrafish oocyte polarity

Author:

Deis Rachael,Elkouby Yaniv M.ORCID

Abstract

AbstractMolecular condensates provide new paradigms in biology, but their cellular regulation is unclear. Condensates undergo phase separation, decreasing their solubility and compartmentalizing their content. In vertebrate oocytes, RNA-protein (RNP) granules form condensates by phase separation, but the underlying mechanisms are unknown. RNP granules localize to the Balbiani body (Bb), a conserved membraneless organelle, that establishes oocyte polarity. Bb loss results in symmetrical eggs and embryonic lethality. Bb granules aggregate around the centrosome in a nuclear cleft, prior to assembling the mature structure. The Bucky ball (Buc) protein nucleates Bb granules and is essential for Bb formation. Howe ver, the dynamics, mechanisms, and regulation of Bb granule nucleation are unclear. While the mature Bb structure was shown to be a rigid, amyloid-like, phase-separated structure in Xenopus, the early phase separation dynamics prior to maturation are completely unknown. Here, by live, genetic, super-resolution microscopy, and FRAP analyses in zebrafish ovaries, we establish that Buc phase-separates Bb granules and that microtubules play multiple stepwise roles in controlling Buc phase separation and Bb formation specifically at the early nuclear cleft stages. We show that Buc first phase-separates into dynamic liquid droplet-like granules that fuse to form the main Bb aggregate. We demonstrate that early aggregated Buc exhibited dynamic turnover and that this turnover requires dynein-mediated trafficking of Buc on a transient lattice of microtubules that we identified. At later stages, microtubules encapsulated the Bb, indicating a structural role. Thus, microtubules organize multiple steps in Bb condensation. Moreover, in the mature Bb, Buc was stable and required for Bb amyloid formation, finalizing Bb condensation. We found for the first time by live imaging, ThT-positive presumptive amyloid ß-sheets in the mature zebrafish Bb, that we re absent in buc-/- oocytes. Thus, providing the first genetic evidence for Buc dependent formation of presumptive amyloid fibrils in the Bb. Molecular condensation is often viewe d as a self-assembly process. Here, we propose a novel paradigm for the cellular control over condensation mechanisms by microtubules in development. The regulation of Bb assembly and disassembly in the context of phase separation allows studying these mechanisms in physiological conditions, advancing their understanding in neurodegenerative disease and female reproduction.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3