Abstract
AbstractEvolution turned aquaporins (AQPs) into the most efficient facilitators of passive water flow through cell membranes at no expense of solute discrimination. In spite of a plethora of solved AQP structures, many structural details remain hidden. Here, by combining extensive sequence- and structural-based analysis of a unique set of 20 non-redundant high-resolution structures and molecular dynamics simulations of 4 representatives, we identify key aspects of AQP stability, gating, selectivity, pore geometry and oligomerization, with a potential impact on channel functionality. We challenge the general view of AQPs possessing a continuous open water pore and depict that AQPs selectivity is not exclusively shaped by pore lining residues but also by the relative arrangement of transmembrane helices. Moreover, our analysis reveals that hydrophobic interactions constitute the main determinant of protein thermal stability. Finally, we establish a novel numbering scheme of the conserved AQP scaffold facilitating direct comparison and prediction of potential structural effects of e.g. disease-causing mutations. Additionally, our results pave the way for the design of optimized AQP water channels to be utilized in biotechnological applications.
Publisher
Cold Spring Harbor Laboratory