The GR2D2 Estimator for the Precision Matrices

Author:

Gan DailinORCID,Yin GuoshengORCID,Zhang Yan DoraORCID

Abstract

AbstractBiological networks are important for the analysis of human diseases, which summarize the regulatory interactions and other relationships between different molecules. Understanding and constructing networks for molecules, such as DNA, RNA and proteins, can help elucidate the mechanisms of complex biological systems. The Gaussian Graphical Models (GGMs) are popular tools for the estimation of biological networks. Nonetheless, reconstructing GGMs from high-dimensional datasets is still challenging. Current methods cannot handle the sparsity and high-dimensionality issues arising from datasets very well. Here we developed a new GGM, called the GR2D2 (Graphical R2-induced Dirichlet Decomposition) model, based on the R2D2 priors for linear models. Besides, we provided a data-augmented block Gibbs sampler algorithm. The R code is available at https://github.com/RavenGan/GR2D2. The GR2D2 estimator shows superior performance in estimating the precision matrices compared to existing techniques in various simulation settings. When the true precision matrix is sparse and of high dimension, the GR2D2 provides the estimates with smallest information divergence from the underlying truth. We also compare the GR2D2 estimator to the graphical horseshoe estimator in five cancer RNA-seq gene expression datasets grouped by three cancer types. Our results show that GR2D2 successfully identifies common cancer pathways and cancer-specific pathways for each dataset.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3