Humans prioritize walking efficiency or walking stability based on environmental risk

Author:

Kulkarni Ashwini,Cui ChuyiORCID,Rietdyk ShirleyORCID,Ambike SatyajitORCID

Abstract

AbstractIn human gait, the body’s mechanical energy at the end of one step is reused to achieve forward progression during the subsequent step, thereby reducing the required muscle work. During the single stance phase, humans rely on the largely uncontrolled passive inverted pendular motion of the body to perpetuate forward motion. These passive body dynamics, while improving walking efficiency, also indicate that lower passive dynamic stability in the anterior direction since the individual will be less able to withstand a forward external perturbation. Here we test the novel hypothesis that humans manipulate passive anterior-posterior (AP) stability via active selection of step length to either achieve energy-efficient gait or to improve stability when it is threatened. We computed the AP margin of stability, which quantifies the passive dynamic stability of gait, for multiple steps as healthy young adults (N=20) walked on a clear and on an obstructed walkway. Participants used passive dynamics to achieve energy-efficient gait for all but one step; when crossing the obstacle with the leading limb, AP margin of stability was increased. This increase indicated caution to offset the greater risk of falling after a potential trip. Furthermore, AP margin of stability increased while approaching the obstacle, indicating that humans proactively manipulate the passive dynamics to meet the demands of the locomotor task. Finally, the step length and the center of mass motion co-varied to maintain the AP margin of stability for all steps in both tasks at the specific values for each step. We conclude that humans actively regulate step length to maintain specific levels of passive dynamic stability for each step during unobstructed and obstructed gait.

Publisher

Cold Spring Harbor Laboratory

Reference57 articles.

1. A Kinematic Comparison of Single, Double, and Triple Axels

2. Knoll K , Hildebrand F. Optimum Movement Coordunation in Multi-Revolution Jumps in Figure Skating. In: Riehle HJ , Vieten MM , editors. 16 International Symposium on Biomechanics in Sport July 21–25; Konstanz, Germany 1998.

3. Dynamic Principles of Gait and Their Clinical Implications

4. Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions

5. The concept of margins of stability can be used to better understand a change in obstacle crossing strategy with an increase in age

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3