Volatile hydrogen cyanide released by Pseudomonas aeruginosa provides a competitive advantage over Staphylococcus aureus in biofilm and in vivo lung environments

Author:

Létoffé Sylvie,Wu Yongzheng,Darch Sophie E,Beloin ChristopheORCID,Whiteley Marvin,Touqui Lhousseine,Ghigo Jean-MarcORCID

Abstract

ABSTRACTDiverse bacterial volatile compounds alter bacterial stress responses and physiology, but their contribution to population dynamics in polymicrobial communities is not well known. In this study, we showed that airborne volatile hydrogen cyanide (HCN) produced by a wide range of Pseudomonas aeruginosa clinical strains leads to at-a-distance inhibition of the growth of a wide array of Staphylococcus aureus strains. We determined that low oxygen level environments not only enhance P. aeruginosa HCN production but also increase S. aureus sensitivity to HCN, which impacts P. aeruginosa-S. aureus competition in microaerobic in vitro mixed biofilms as well as in an in vitro cystic fibrosis lung sputum medium. Consistently, we demonstrated that production of HCN provides a competitive advantage to P. aeruginosa in a mouse model of airways co-infected by P. aeruginosa and S. aureus. Our study therefore demonstrates that P. aeruginosa HCN contributes to local and distant airborne competition against S. aureus and potentially other HCN-sensitive bacteria in contexts relevant to cystic fibrosis and other polymicrobial infectious diseases.IMPORTANCEAirborne volatile compounds produced by bacteria are often only considered as attractive or repulsive scents, but they also directly contribute to bacterial physiology. Here we showed that volatile hydrogen cyanide (HCN) released by a wide range of Pseudomonas aeruginosa clinical strains inhibits Staphylococcus aureus growth in low oxygen in vitro biofilms or aggregates and in vivo lung environments. These results are of pathophysiological relevance, since lungs of cystic fibrosis patients are known to present microaerophilic areas and to be commonly associated with the presence of S. aureus and P. aeruginosa in polymicrobial communities. Our study therefore provides insights into how a bacterial volatile compound can contribute to the exclusion of S. aureus and other HCN-sensitive competitors from P. aeruginosa ecological niches. It opens new perspectives for the management or monitoring of P. aeruginosa infections in lower lung airway infections and other polymicrobial disease contexts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3