The Anti-Burkholderia Lasso Peptide Ubonodin Co-Opts the Siderophore Receptor PupB for Cellular Entry

Author:

Do Truc,Thokkadam Alina,Leach Robert,Link A. JamesORCID

Abstract

ABSTRACTNew antibiotics are needed as bacterial infections continue to be a leading cause of death. Notorious among antibiotic-resistant bacteria is the Burkholderia cepacia complex (Bcc), which infects cystic fibrosis patients, causing lung function decline. We recently discovered a novel ribosomally synthesized and post-translationally modified peptide (RiPP), ubonodin, with potent activity against several Burkholderia pathogens. Ubonodin inhibits RNA polymerase, but only select Bcc strains were susceptible, indicating that having a conserved cellular target does not guarantee activity. Given the cytoplasmic target, we speculate that cellular uptake of ubonodin determines susceptibility. Here, we report a new outer membrane siderophore receptor, PupB, that is required for ubonodin uptake in B. cepacia. Loss of PupB renders B. cepacia resistant to ubonodin, whereas expressing PupB sensitizes a resistant strain. Thus, outer membrane transport is the major determinant of ubonodin’s spectrum of activity. We also show that PupB is activated by a TonB protein and examine a transcriptional pathway that further regulates PupB. Finally, we elucidate the complete cellular uptake pathway for ubonodin by also identifying its inner membrane transporter in B. cepacia. Our work unravels central steps in the mechanism of action of ubonodin and establishes a general framework for dissecting RiPP function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3