Systematic dissection of phosphorylation-dependent YAP1 complex formation elucidates a key role for PTPN14 in Hippo signal integration

Author:

Uliana Federico,Ciuffa Rodolfo,Mishra Ranjan,Fossati Andrea,Frommelt Fabian,Mehnert Martin,Birkeland Eivind Salmorin,Peter Matthias,Tapon Nicolas,Aebersold Ruedi,Gstaiger Matthias

Abstract

ABSTRACTCellular signaling relies on the temporal and spatial control of the formation of transient protein complexes by post-translational modifications, most notably by phosphorylation. While several computational methods have been developed to predict the functional relevance of phosphorylation sites, assessing experimentally the interdependency between protein phosphorylation and protein-protein interactions (PPIs) remains a major challenge. Here, we describe an experimental strategy to establish interdependencies between specific phosphorylation events and complex formation. This strategy is based on three main steps: (i) systematically charting the phosphorylation landscape of a target protein; (ii) assigning distinct proteoforms of the target protein to different protein complexes by electrophoretic separation of native complexes (BNPAGE) and protein/phopho correlation profiling; and (iii) genetically deleting known regulators of the target protein to identify which ones are required for given proteoforms and complexes. We applied this strategy to study phosphorylation- dependent modulation of complexes containing the transcriptional co-regulator YAP1. YAP1 is highly phosphorylated and among the most extensively connected proteins in the human interactome. It functions as the main signal integrator and effector protein of the Hippo pathway which controls organ size and tissue homeostasis. Using our workflow, we could identify several distinct YAP1 proteoforms specifically associated with physically distinct complexes and infer how their formation is affected by known Hippo pathway members. Importantly, our findings suggest that the tyrosine phosphatase PTPN14 controls the co-transcriptional activity of YAP1 by regulating its interaction with the LATS1/2 kinases. In summary, we present a powerful strategy to establish interdependencies between specific phosphorylation events and complex formation, thus contributing to the “functionalization” of phosphorylation events and by this means provide new insights into Hippo signaling.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3