Prediction of gene essentiality using machine learning and genome-scale metabolic models

Author:

Freischem Lilli J.,Barahona MauricioORCID,Oyarzún Diego A.ORCID

Abstract

AbstractThe identification of essential genes, i.e. those that impair cell survival when deleted, requires large growth assays of knock-out strains. The complexity and cost of such experiments has triggered a growing interest in computational methods for gene essentiality prediction. In the case of metabolic genes, Flux Balance Analysis (FBA) is widely employed to predict essentiality under the assumption that cells maximize their growth rate. However, this approach implicitly assumes that knock-out strains optimize the same objectives as the wild-type, which excludes cases in which deletions cause large changes in cell physiology to meet other objectives for survival. Here we resolve this limitation with a novel machine learning approach that predicts essentiality directly from wild-type flux distributions. We first project the wild-type FBA solution onto a mass flow graph, a digraph with reactions as nodes and edge weights proportional to the mass transfer between reactions, and then train binary classifiers on the connectivity of graph nodes. We demonstrate the efficacy of this approach using the most complete metabolic model of Escherichia coli, achieving near state-of-the art prediction accuracy for essential genes. Our approach suggests that wild-type FBA solutions contain enough information to predict essentiality, without the need to assume optimality of deletion strains.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3