Recombinant annexin A6 promotes membrane repair in a stem cell derived-cardiomyocyte model of dystrophic cardiomyopathy

Author:

Fullenkamp Dominic E.,Willis Alexander B.,Curtin Jodi L.,Amaral Ansel P.,Harris Sloane I.,Burridge Paul W.,Demonbreun Alexis R.,McNally Elizabeth M.

Abstract

ABSTRACTHeart failure is a major source of mortality in Duchenne muscular dystrophy (DMD). DMD arises from mutations that ablate expression of the protein dystrophin, which render the plasma membrane unusually fragile and prone to disruption. In DMD patients, repeated mechanical stress leads to membrane damage and cardiomyocyte loss. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) offer the opportunity to study specific mutations in the context of a human cell, but these models can be improved by adding physiologic stressors. We modeled the primary defect underlying DMD by applying equibiaxial mechanical strain to DMD iPSC-CMs. DMD iPSC-CMs demonstrated an increased susceptibility to equibiaxial strain after 2 hours at 10% strain relative to healthy control cells, measured as increased lactate dehydrogenase (LDH) release. After 24 hours, both DMD and healthy control iPSC-CMs showed evidence of injury with release of LDH and cardiac troponin T. We exposed iPSC-CMs to recombinant annexin A6, a protein resealing agent, and found reduced LDH and troponin release in DMD and control iPSC-CMs that had been subjected to 24 hour strain at 10%. We used aptamer protein profiling of media collected from DMD and control iPSC-CMs and compared these results to serum protein profiling from DMD patients. We found a strong correlation between the proteins in DMD patient serum and media from DMD iPSC-CMs subjected to mechanical stress. By developing an injury assay that specifically targets an underlying mechanism of injury seen in DMD-related cardiomyopathy, we demonstrated the potential therapeutic efficacy of the protein membrane resealer, recombinant annexin A6, for the treatment of DMD-related cardiomyopathy and general cardiac injury.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3