Chondroitin Sulfate Proteoglycan 4,6 sulfation regulates sympathetic nerve regeneration after myocardial infarction

Author:

Blake MRORCID,Parrish DC,Staffenson MA,Sueda S,Woodward W,Habecker BAORCID

Abstract

AbstractSympathetic denervation of the heart following myocardial infarction (MI) is sustained by chondroitin sulfate proteoglycans (CSPGs) in the cardiac scar, and denervation predicts risk of sudden cardiac death. Blocking CSPG signaling restores sympathetic axon outgrowth into the cardiac scar, decreasing arrhythmia susceptibility. Axon growth inhibition by CSPGs is thought to depend on the sulfation status of the glycosaminoglycans (CS-GAGs) attached to the core protein. Tandem sulfation of CS-GAGs at the 4th (4S) and 6th (6S) positions of n-acetyl-galactosamine inhibits outgrowth in several types of neurons within the central nervous system, but it is not known if sulfation is similarly critical during peripheral nerve regeneration. We asked if CSPG sulfation prevented sympathetic axon outgrowth. Sympathetic neurite outgrowth across purified CSPGs is restored in vitro by reducing 4S with the 4-sulfatase enzyme Arylsulfatase-B (ARSB). Additionally, we co-cultured cardiac scar tissue with sympathetic ganglia ex vivo and found that reducing 4S with ARSB restored axon outgrowth to control levels. We examined levels of the enzymes responsible for adding and removing sulfation to CS-GAGs by western blot to determine if they were altered in the left ventricle after MI. We found that CHST15 (4S dependent 6-sulfotransferase) was upregulated, and ARSB was downregulated after MI. Increased CHST15 combined with decreased ARSB suggests a mechanism for production and maintenance of sulfated CSPGs in the cardiac scar. We altered tandem sulfated 4S,6S CS-GAGs in vivo by transient siRNA knockdown of Chst15 and found that reducing 4S,6S restored Tyrosine Hydroxylase (TH) positive sympathetic nerve fibers in the cardiac scar after MI and reduced arrhythmias. Overall, our results suggest that modulating CSPG-sulfation after MI may be a therapeutic target to promote sympathetic nerve regeneration in the cardiac scar and reduce post-MI cardiac arrhythmias.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3