Photons guided by axons may enable backpropagation-based learning in the brain

Author:

Zarkeshian Parisa,Kergan Taylor,Ghobadi Roohollah,Nicola Wilten,Simon Christoph

Abstract

ABSTRACTDespite great advances in explaining synaptic plasticity and neuron function, a complete understanding of the brain’s learning algorithms is still missing. Artificial neural networks provide a powerful learning paradigm through the backpropagation algorithm which modifies synaptic weights by using feedback connections. Backpropagation requires extensive communication of information back through the layers of a network. This has been argued to be biologically implausible and it is not clear whether backpropagation can be realized in the brain. Here we suggest that biophotons guided by axons provide a potential channel for backward transmission of information in the brain. Biophotons have been experimentally shown to be produced in the brain, yet their purpose is not understood. We propose that biophotons can propagate from each post-synaptic neuron to its pre-synaptic one to carry the required information backward. To reflect the stochastic character of biophoton emissions, our model includes the stochastic backward transmission of teaching signals. We demonstrate that a three-layered network of neurons can learn the MNIST handwritten digit classification task using our proposed backpropagation-like algorithm with stochastic photonic feedback. We model realistic restrictions and show that our system still learns the task for low rates of biophoton emission, information-limited (one bit per photon) backward transmission, and in the presence of noise photons. Our results suggest a new functionality for biophotons and provide an alternate mechanism for backward transmission in the brain.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Marton, F. & Booth, S. Learning and awareness (Routledge, 2013).

2. Gross, R. Psychology: The science of mind and behaviour 7th edition (Hodder Education, 2015).

3. Rogers, A. & Horrocks, N. Teaching adults (McGraw-Hill Education (UK), 2010).

4. Hebb, D. O. The organization of behavior: A neuropsychological theory (Psychology Press, 2005).

5. Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3