Immunization with recombinant accessory protein-deficient SARS-CoV-2 protects against lethal challenge and viral transmission

Author:

Ye Chengjin,Park Jun-Gyu,Chiem Kevin,Dravid Piyush,Allué-Guardia Anna,Garcia-Vilanova Andreu,Kapoor Amit,Walter Mark R.,Kobie James J.ORCID,Plemper Richard K.,Torrelles Jordi B.,Martinez-Sobrido Luis

Abstract

ABSTRACTSevere Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to a worldwide Coronavirus Disease 2019 (COVID-19) pandemic. Despite high efficacy of the authorized vaccines, protection against the surging variants of concern (VoC) was less robust. Live-attenuated vaccines (LAV) have been shown to elicit robust and long-term protection by induction of host innate and adaptive immune responses. We sought to develop a COVID-19 LAV by generating 3 double open reading frame (ORF)-deficient recombinant (r)SARS-CoV-2 simultaneously lacking two accessory open reading frame (ORF) proteins (ORF3a/ORF6, ORF3a/ORF7a, and ORF3a/ORF7b). Here, we report that these double ORF-deficient rSARS-CoV-2 have slower replication kinetics and reduced fitness in cultured cells as compared to their parental wild-type (WT) counterpart. Importantly, these double ORF-deficient rSARS-CoV-2 showed attenuation in both K18 hACE2 transgenic mice and golden Syrian hamsters. A single intranasal dose vaccination induced high levels of neutralizing antibodies against different SARS-CoV-2 VoC, and also activated viral component-specific T-cell responses. Notably, the double ORF-deficient rSARS-CoV-2 were able to protect, as determined by inhibition of viral replication, shedding, and transmission, against challenge with SARS-CoV-2. Collectively, our results demonstrate the feasibility to implement these double ORF-deficient rSARS-CoV-2 as safe, stable, immunogenic and protective LAV for the prevention of SARS-CoV-2 infection and associated COVID-19 disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3