Bacterial SOS-independent Superfast Evolution of Multi-Drug Resistance

Author:

Zhang Le,Su Qian PeterORCID,Guan Yunpeng,Cheng Yuen Yee,Cokcetin Nural,Bottomley Amy,Robinson Andrew,Harry Elizabeth,van Oijen Antoine,Jin Dayong

Abstract

AbstractAntibiotic resistance has been a global threat to public health. Majority of antibiotics kill bacteria by inducing the DNA damage. However, bacteria can repair DNA damage via a series of intrinsic pathways including the SOS response. The master regulator of the SOS response is RecA, which was shown to be involved in an enhanced evolution of resistance to fluoroquinolone. Until very recently, the relationship between the evolution of β-lactam resistance and the SOS response remains undefined. Here, we find a superfast evolution of β-lactam resistance (20-fold MIC) following the deletion of RecA in Escherichia coli and treatment with a single dose of β-lactams in 8 hours. Importantly, once this type of resistance being established, it was stable and heritable. Controversially to previous findings, our results indicate this process is completely orthogonal to the SOS response but dependent on the hindrance of DNA repair. In addition, we observe explosive appearance of drug-specific mutations of the bacterial genome in 8 hours of exposure to ampicillin, such as the acrB mutations which is responsible for multi-drug resistance. Together, these findings demonstrate that hindrance of DNA repair not only generally antagonizes cells fitness, but also provides bacteria with genetic plasticity to adapt to diverse stressful environments and can dramatically accelerates the evolution of antibiotic resistance in DNA repair deficiency cells.ImportanceThe evolution of antibiotic resistance can be induced by long-term exposure to antibiotics. However, we for the first time report a superfast evolution of multi-drug resistance induced by a single treatment with β-lactam in DNA repair deficiency Escherichia coli. More importantly, this type of evolutionary trajectory can cause a more rapid spread of drug-resistant bacteria in the community, because once the resistance being established, it was stable and heritable. In addition, from a clinical perspective, our finding significantly highlights the possibility that the synergistic drug combination between β-lactam and inhibitors targeting DNA repair system especially in the patients with cancer treatment can lead to a superfast evolution of multi-drug resistance.

Publisher

Cold Spring Harbor Laboratory

Reference45 articles.

1. A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future

2. The Creation of Antibiotics and the Birth of Modern Medicine;Emerging Infect Dis,2019

3. The antibiotic resistance crisis causes and threats;P & T,2015

4. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study;ESAC Project Group;The Lancet,2015

5. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis;Antimicrobial Resistance Collaborators;The Lancet,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3