Class-Controlled Copy-Paste Based Cell Segmentation for CoNIC Challenge

Author:

Ahn Heeyoung,Hong Yiyu

Abstract

AbstractMuti-class cell segmentation in histopathology images is a challenging task. Here, we propose a copy-paste augmentation-based method for CoNIC challenge. As the challenge train data is severely class imbalanced. To deal with it, we copy all cell objects of train data and paste them to the train image on the fly while training model. The paste strategy is that we paste more cell objects of the insufficient classes and paste less cell objects for the sufficient classes. We experimented the method by stratified splitting train data in 4:1 ratio, the result shows the copy paste method can reach PQ 64.84 and mPQ 53.72, which improved and 0.66 compared to without copy pasted. Moreover, the improvements in those insufficient classes is more obvious.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3