Neural and cognitive correlates of performance in dynamic multi-modal settings

Author:

Dziego Chloe A.ORCID,Bornkessel-Schlesewsky InaORCID,Jano SophieORCID,Chatburn AlexORCID,Schlesewsky MatthiasORCID,Immink Maarten A.ORCID,Sinha RuchiORCID,Irons JessicaORCID,Schmitt Megan,Chen StephORCID,Cross Zachariah R.ORCID

Abstract

ABSTRACTThe endeavour to understand human cognition has largely relied upon investigation of task-related brain activity. However, resting-state brain activity can also offer insights into individual information processing and performance capabilities. Previous research has identified electroencephalographic resting-state characteristics (most prominently: the individual alpha frequency; IAF) that predict cognitive function. However, it has largely overlooked a second component of electrophysiological signals: aperiodic 1/f activity. The current study examined how both oscillatory and aperiodic resting-state EEG measures, alongside traditional cognitive tests, can predict performance in a dynamic and complex, semi-naturalistic cognitive task. Participants’ resting-state EEG was recorded prior to engaging in a Target Motion Analysis (TMA) task in a simulated submarine control room environment (CRUSE), which required participants to integrate dynamically changing information over time. We demonstrated that the relationship between IAF and cognitive performance extends from simple cognitive tasks (e.g., digit span) to complex, dynamic measures of information processing. Further, our results showed that individual 1/f parameters (slope and intercept) differentially predicted performance across practice and testing sessions, whereby flatter slopes were associated with improved performance during learning, while higher intercepts were linked to better performance during testing. In addition to the EEG predictors, we demonstrate a link between cognitive skills most closely related to the TMA task (i.e., spatial imagery) and subsequent performance. Overall, the current study highlights (1) how resting-state metrics – both oscillatory and aperiodic - have the potential to index higher-order cognitive capacity, while (2) emphasising the importance of examining these electrophysiological components within more dynamic settings and over time.

Publisher

Cold Spring Harbor Laboratory

Reference101 articles.

1. Alday, P. M. (2018). lmerOut: LaTeX Output for Mixed Effects Models with lme4. (0.5). https://bitbucket.org/palday/lmerout

2. Alday, P. M. (2019). Philistine. https://philistine.readthedocs.io/en/latest/api/philistine.mne.savgol_iaf.html

3. Self-organized dynamical complexity in human wakefulness and sleep: Different critical brain-activity feedback for conscious and unconscious states;Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics,2015

4. A brief note on overlapping confidence intervals

5. Brain complexity increases in mania

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3