Maximum likelihood pandemic-scale phylogenetics

Author:

De Maio NicolaORCID,Kalaghatgi Prabhav,Turakhia Yatish,Corbett-Detig Russell,Minh Bui QuangORCID,Goldman Nick

Abstract

SummaryPhylogenetics plays a crucial role in the interpretation of genomic data1. Phylogenetic analyses of SARS-CoV-2 genomes have allowed the detailed study of the virus’s origins2, of its international3,4 and local4–9 spread, and of the emergence10 and reproductive success11 of new variants, among many applications. These analyses have been enabled by the unparalleled volumes of genome sequence data generated and employed to study and help contain the pandemic12. However, preferred model-based phylogenetic approaches including maximum likelihood and Bayesian methods, mostly based on Felsenstein’s ‘pruning’ algorithm13,14, cannot scale to the size of the datasets from the current pandemic4,15, hampering our understanding of the virus’s evolution and transmission16. We present new approaches, based on reworking Felsenstein’s algorithm, for likelihood-based phylogenetic analysis of epidemiological genomic datasets at unprecedented scales. We exploit near-certainty regarding ancestral genomes, and the similarities between closely related and densely sampled genomes, to greatly reduce computational demands for memory and time. Combined with new methods for searching amongst candidate evolutionary trees, this results in our MAPLE (‘MAximum Parsimonious Likelihood Estimation’) software giving better results than popular approaches such as FastTree 217, IQ-TREE 218, RAxML-NG19 and UShER15. Our approach therefore allows complex and accurate proba-bilistic phylogenetic analyses of millions of microbial genomes, extending the reach of genomic epidemiology. Future epidemiological datasets are likely to be even larger than those currently associated with COVID-19, and other disciplines such as metagenomics and biodiversity science are also generating huge numbers of genome sequences20–22. Our methods will permit continued use of preferred likelihood-based phylogenetic analyses.

Publisher

Cold Spring Harbor Laboratory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3