Inference of B cell clonal families using heavy/light chain pairing information

Author:

Ralph Duncan K.ORCID,Matsen Frederick A.ORCID

Abstract

AbstractNext generation sequencing of B cell receptor (BCR) repertoires has become a ubiquitous tool for understanding the antibody-mediated immune response: it is now common to have large volumes of sequence data coding for both the heavy and light chain subunits of the BCR. However, until the recent development of high throughput methods of preserving heavy/light chain pairing information, these samples contained no explicit information on which heavy chain sequence pairs with which light chain sequence. One of the first steps in analyzing such BCR repertoire samples is grouping sequences into clonally related families, where each stems from a single rearrangement event. Many methods of accomplishing this have been developed, however, none so far has taken full advantage of the newly-available pairing information. This information can dramatically im-prove clustering performance, especially for the light chain. The light chain has traditionally been challenging for clonal family inference because of its low diversity and consequent abundance of non-clonal families with indistinguishable naive rearrangements. Here we present a method of incorporating this pairing information into the clustering process in order to arrive at a more accurate partition of the data into clonally related families. We also demonstrate two methods of fixing imperfect pairing information, which may allow for simplified sample preparation and increased sequencing depth. Finally, we describe several other improvements to thepartissoftware package (https://github.com/psathyrella/partis).AuthorSummaryAntibodies form part of the adaptive immune response, and are critical to immunity acquired by both vaccination and infection. Next generation sequencing of the B cell receptor (BCR) repertoire provides a broad and highly informative view of the DNA sequences from which antibodies arise. Until recently, however, this sequencing data was not able to pair together the two domains (from separate chromosomes) that make up a functional antibody. In this paper we present several methods to improve analysis of the newpaireddata that does pair together sequence data for complete antibodies. We first show a method that better groups together sequences stemming from the same ancestral cell, solving a problem called “clonal family inference.” We then show two methods that can correct for various imperfections in the data’s identification of which sequences pair together to form complete antibodies, which together may allow for significantly simplified experimental methods.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3