Thiazides induce glucose intolerance through inhibition of mitochondrial carbonic anhydrase 5b in β-cells

Author:

Kucharczyk Patrycja,Albano Giuseppe,Deisl Christine,Wueest Stephan,Konrad Daniel,Fuster Daniel G.ORCID

Abstract

AbstractThiazides are associated with glucose intolerance and new onset diabetes mellitus, but the molecular mechanisms remain elusive. The aim of this study was to decipher the molecular basis of thiazide-induced glucose intolerance. In mice, hydrochlorothiazide induced a pathological glucose tolerance, characterized by reduced first phase insulin secretion but normal insulin sensitivity. In vitro, thiazides inhibited glucose-and sulfonylurea-stimulated insulin secretion in islets and the murine β-cell line Min6 at pharmacologically relevant concentrations. Inhibition of insulin secretion by thiazides was CO2/HCO3--dependent, not additive to unselective carbonic anhydrase (CA) inhibition with acetazolamide and independent of extracellular potassium. In contrast, insulin secretion was unaltered in islets of mice lacking the known molecular thiazide targets NCC (SLC12A3) or NDCBE (SLC4A8). CA expression profiling with subsequent knock-down of individual CA isoforms suggested mitochondrial CA5b as molecular target. In support of these findings, thiazides significantly attenuated Krebs cycle anaplerosis through reduction of mitochondrial oxalacetate synthesis. CA5b KO mice were resistant to thiazide-induced glucose intolerance, and insulin secretion of islets isolated from CA5b KO mice was unaffected by thiazides.In summary, our study reveals attenuated insulin secretion due to inhibition of the mitochondrial CA5b isoform in β-cells as molecular mechanism of thiazide-induced glucose intolerance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3