Author:
Gongwer Michael W.,Klune Cassandra B.,Couto João,Jin Benita,Enos Alexander S.,Chen Rita,Friedmann Drew,DeNardo Laura A.
Abstract
AbstractTo understand how the brain produces behavior, we must elucidate the relationships between neuronal connectivity and function. The medial prefrontal cortex (mPFC) is critical for complex functions including decision-making and mood. mPFC projection neurons collateralize extensively, but the relationships between mPFC neuronal activity and brain-wide connectivity are poorly understood. We performed whole-brain connectivity mapping and fiber photometry to better understand the mPFC circuits that control threat avoidance. Using tissue clearing and light sheet fluorescence microscopy we mapped the brain-wide axon collaterals of populations of mPFC neurons that project to nucleus accumbens (NAc), ventral tegmental area (VTA), or contralateral mPFC (cmPFC) in mice. We present DeepTraCE, for quantifying bulk-labeled axonal projections in images of cleared tissue, and DeepCOUNT, for quantifying cell bodies. Anatomical maps produced with DeepTraCE aligned with known axonal projection patterns and revealed class-specific topographic projections within regions. During threat avoidance, cmPFC and NAc-projectors encoded conditioned stimuli, but only when action was required to avoid threats. mPFC-VTA neurons encoded learned but not innate avoidance behaviors. Together our results present new and optimized approaches for quantitative whole-brain analysis and indicate that anatomically-defined classes of mPFC neurons have specialized roles in threat avoidance.
Publisher
Cold Spring Harbor Laboratory