Anatomical, ontogenetic, and genomic homologies guide reconstructions of the teeth-to-baleen transition in mysticete whales

Author:

Gatesy John,Ekdale Eric G.,Deméré Thomas A.,Lanzetti Agnese,Randall Jason,Berta Annalisa,El Adli Joseph J.,Springer Mark S.,McGowen Michael R.

Abstract

AbstractThe transition in Mysticeti (Cetacea) from capture of individual prey using teeth to bulk filtering batches of small prey using baleen ranks among the most dramatic evolutionary transformations in mammalian history. We review phylogenetic work on the homology of mysticete feeding structures from anatomical, ontogenetic, and genomic perspectives. Six characters with key functional significance for filter-feeding behavior are mapped to cladograms based on 11 morphological datasets to reconstruct evolutionary change across the teeth-to-baleen transition. This comparative summary within a common parsimony framework reveals extensive conflicts among independent systematic efforts but also broad support for the newly named clade Kinetomenta (Aetiocetidae + Chaeomysticeti). Complementary anatomical studies using CTscans and ontogenetic series hint at commonalities between the developmental programs for teeth and baleen, lending further support for a ‘transitional chimaeric feeder’ scenario that best explains current knowledge on the transition to filter feeding. For some extant mysticetes, the ontogenetic sequence in fetal specimens recapitulates the inferred evolutionary transformation: from teeth, to teeth and baleen, to just baleen. Phylogenetic mapping of inactivating mutations reveals mutational decay of ‘dental genes’ related to enamel formation before the emergence of crown Mysticeti, while ‘baleen genes’ that were repurposed or newly derived during the evolutionary elaboration of baleen currently are poorly characterized. Review and meta-analysis of available data suggest that the teeth-to-baleen transition in Mysticeti ranks among the best characterized macroevolutionary shifts due to the diversity of data from the genome, the fossil record, comparative anatomy, and ontogeny that directly bears on this remarkable evolutionary transformation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3