Interactions between anthropogenic stressors and recurring perturbations mediate ecosystem resilience or collapse

Author:

Keith DAORCID,Benson DH,Baird IRC,Watts L,Simpson CC,Krogh M,Gorissen S,Ferrer-Paris JR,Mason TJ

Abstract

AbstractInsights into declines in ecosystem resilience, their causes and effects, can inform pre-emptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, non-linear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands in southeastern Australia. We hypothesised that underground mining (stressor) reduced resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining and, after a landscape fire, we compared the responses of multiple state variables representing ecosystem structure, composition and function in wetlands within the mining footprint to unmined reference wetlands. Soil moisture showed very strong evidence of decline without recovery in mined swamps, but was maintained in reference swamps through eight years. Relative to burnt reference swamps, burnt and mined swamps showed greater loss of peat via substrate combustion, reduced cover, height and biomass of regenerating vegetation, reduced post-fire plant species richness and abundance, altered plant species composition, increased mortality rates of woody plants, reduced post-fire seedling recruitment, and local extinction of a hydrophilc fauna species. Mined swamps therefore showed strong symptoms of post-fire ecosystem collapse, while reference swamps regenerated vigorously. We conclude that an anthropogenic stressor may diminish the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3