A Sliding Window Approach to Optimize the Time-varying Parameters of a Spatially-explicit and Stochastic Model of COVID-19

Author:

Ratnavale Saikanth,Hepp CrystalORCID,Doerry EckORCID,Mihaljevic Joseph RORCID

Abstract

AbstractThe implementation of non-pharmaceutical public health interventions can have simultaneous impacts on pathogen transmission rates as well as host mobility rates. For instance, with SARS-CoV-2, masking can influence host-to-host transmission, while stay-at-home orders can influence mobility. Importantly, variations in transmission rates and mobility patterns can influence pathogen-induced hospitalization rates. This poses a significant challenge for the use of mathematical models of disease dynamics in forecasting the spread of a pathogen; to create accurate forecasts in spatial models of disease spread, we must simultaneously account for time-varying rates of transmission and host movement. In this study, we develop a statistical model-fitting algorithm to estimate dynamic rates of SARS-CoV-2 transmission and host movement from geo-referenced hospitalization data. Using simulated data sets, we then test whether our method can accurately estimate these time-varying rates simultaneously, and how this accuracy is influenced by the spatial population structure. Our model-fitting method relies on a highly parallelized process of grid search and a sliding window technique that allows us to estimate time-varying transmission rates with high accuracy and precision, as well as movement rates with somewhat lower precision. Estimated parameters also had lower precision in more rural data sets, due to lower hospitalization rates (i.e., these areas are less data-rich). This model-fitting routine could easily be generalized to any stochastic, spatially-explicit modeling framework, offering a flexible and efficient method to estimate time-varying parameters from geo-referenced data sets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3