AI-Driven Longitudinal Characterization of Neonatal Health and Morbidity

Author:

De Francesco DavideORCID,Reiss Jonathan D.,Roger Jacquelyn,Tang Alice S.ORCID,Chang Alan L.ORCID,Becker Martin,Phongpreecha ThanaphongORCID,Espinosa Camilo,Morin Susanna,Berson EloïseORCID,Thuraiappah MelanORCID,Le Brian L.,Ravindra Neal G.ORCID,Payrovnaziri Seyedeh NeelufarORCID,Mataraso SamsonORCID,Kim YeasulORCID,Xue Lei,Rosenstein Melissa,Oskotsky TomikoORCID,Marić Ivana,Gaudilliere Brice,Carvalho BrendanORCID,Bateman Brian T.,Angst Martin S.ORCID,Prince Lawrence S.,Blumenfeld Yair J.,Benitz William EORCID,Fuerch Janene H.,Shaw Gary M.,Sylvester Karl G.,Stevenson David K.,Sirota MarinaORCID,Aghaeepour NimaORCID

Abstract

AbstractWhile prematurity is the single largest cause of death in children under 5 years of age, the current definition of prematurity, based on gestational age, lacks the precision needed for guiding care decisions. Here we propose a longitudinal risk assessment for adverse neonatal outcomes in newborns based on a multi-task deep learning model that uses electronic health records (EHRs) to predict a wide range of outcomes over a period starting shortly after the time of conception and ending months after birth. By linking the EHRs of the Lucile Packard Children’s Hospital and the Stanford Healthcare Adult Hospital, we developed a cohort of 22,104 mother-newborn dyads delivered between 2014 and 2018. This enabled a unique linkage between long-term maternal information and newborn outcomes. Maternal and newborn EHRs were extracted and used to train a multi-input multi-task deep learning model, featuring a long short-term memory neural network, to predict 24 different neonatal outcomes. An additional set of 10,250 mother-newborn dyads delivered at the same Stanford Hospitals from 2019 to September 2020 was used to independently validate the model, followed by a separate analysis of 12,256 mothers-newborn dyads at the University of California, San Francisco. Moreover, comprehensive association analysis identified multiple known and new associations between various maternal and neonatal features and specific neonatal outcomes. To date, this is the largest study utilizing linked EHRs from mother-newborn dyads and would serve as an important resource for the investigation and prediction of neonatal outcomes. An interactive website is available for independent investigators to leverage this unique dataset:https://maternal-child-health-associations.shinyapps.io/shiny_app/.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3