Structural connectivity gradient associated with a dichotomy reveals the topographic organization of the macaque insular cortex

Author:

Cao Long,Du Zongchang,Cui Yue,Zhang Yuanchao,Lu Yuheng,Zhang Baogui,Liu Yanyan,Hou Xiaoxiao,Liu Xinyi,Cheng Luqi,Li Kaixin,Yang Zhengyi,Fan Lingzhong,Jiang TianziORCID

Abstract

AbstractHistology studies revealed that the macaque insular cortex was characterized by the gradual organizations containing agranular, dysgranular and granular insula. However, no consensus has been reached on the elaborate subdivisions of macaque insula. Until now, no neuroimaging study to our knowledge combining connectivity-based gradients and parcellation has been performed to investigate the topographic organization of the macaque insular cortex. In this study, we used high-resolution ex vivo diffusion-weighted imaging data to explore the macaque insular cortex’s global gradient organization and subdivisions. We found a rostrocaudal organization of the dominant gradient in the macaque insula using a diffusion map embedding. Meanwhile, extracting the 25% top and bottom components from the dominant and second gradient, which explained variance over 60% in total within ten gradients, the connectivity-based parcellation method was performed to subdivide each component into two subregions confirmed by the cross-validation analysis. Furthermore, permutations tests identified that two subregions from each component showed significant differences between their connectivity fingerprints. Finally, we found that the dominant and second gradients were significantly correlated with the T1w/T2w and cortical thickness maps in the macaque insula. Taken together, the global gradients combining the subdivisions examined the topographic organization of the macaque insular cortex based on the structural connectivity, which may contribute to a better understanding of the intricate insular cortex anatomy.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3