Do lanthanide-dependent microbial metabolisms drive the release of REEs from weathered granites?

Author:

Voutsinos Marcos Y.ORCID,West-Roberts Jacob A.,Sachdeva Rohan,Moreau John W.,Banfield Jillian F.

Abstract

AbstractPrior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals is critical for the release of phosphate to the biosphere, yet the microorganisms involved, and the genes required for lanthanide metabolism, are poorly understood. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilization and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found gene clusters implicated in lanthanide-based metabolism of methanol (primarily XoxF3 and XoxF5) are surprisingly common in microbial communities in moderately weathered granite where lanthanide phosphate minerals are dissolving. Notably, XoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes, and Alphaproteobacteria. The XoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied XoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilize lanthanide phosphates, it is notable that candidate siderophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. We conclude that the confluence in the zone of moderate weathering of phosphate mineral dissolution, lanthanide utilisation, and methanol oxidation (thus carbonic acid production) may be important during the conversion of granitic rock to soil.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

1. Reductive dissolution of fe(III) oxides byPseudomonas sp. 200

2. Banfield, Jillian F. , and Richard A. Eggleton . 1989. “Apatite Replacement and Rare Earth

3. Mobilization, Fractionation, and Fixation During Weathering.” Clays and Clay Minerals 37 (2): 113–27.

4. Experimental observations of the effects of bacteria on aluminosilicate weathering

5. Recent advances in siderophore biosynthesis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3